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Abstract. The performance of a constraint model can often be im-
proved by converting a subproblem into a single table constraint. In this
paper we study heuristics for identifying promising subproblems. We
propose a small set of heuristics to identify common cases such as ex-
pressions that will propagate weakly. The process of discovering promis-
ing subproblems and tabulating them is entirely automated in the tool
Savile Row. A cache is implemented to avoid tabulating equivalent
subproblems many times. We give a simple algorithm to generate ta-
ble constraints directly from a constraint expression in Savile Row.
We demonstrate good performance on the benchmark problems used in
earlier work on tabulation, and also for several new problem classes.

1 Introduction

In order to improve the performance of a constraint model, a common step is
to reformulate the expression of a subset of the problem constraints, either to
strengthen the inferences made during search by the constraint solver by increas-
ing constraint propagation, or to maintain the level of propagation while reducing
the cost of propagating the constraints. One such method is tabulation: to ag-
gregate a set of constraint expressions into a single table constraint [16,11,14],
which explicitly lists the allowed tuples of values for the decision variables in-
volved. This allows us to exploit efficient table constraint propagators that en-
force generalised arc consistency [3], typically a stronger level of inference than
is achieved for a logically equivalent collection of separate constraints. Successful
examples of this approach where the reformulation has been performed by hand
include Black Hole patience [9] and Steel Mill Slab Design [8].

Recently, Dekker et al. [6] presented a method for the partial automation of
tabulation. In their approach a predicate (a Boolean function) expressed in the
MiniZinc language [17] may be annotated to be converted automatically into a
table constraint. In the same vein, the IBM ILOG CPLEX Optimization Studio
software supports strong annotations to indicate that the solver should find
a precomputed table constraint corresponding to a specified set of variables;
the resulting table constraint is then added to the model as an implied con-
straint [12]. The Propia library performed a similar step for an annotated goal
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in ECLiPSe [13]. In all of these approaches, the crucial first step of identifying
promising parts of a given model for tabulation is left to the human modeller.

In this work we present an entirely automatic tabulation method situated
in the automated constraint modelling tool Savile Row [18,21,19]. A set of
heuristics is employed to identify in an Essence Prime [20] model candidate
sets of constraints for tabulation, which are then tabulated automatically. In
order to demonstrate the effectiveness of our approach, we first examine the same
four case studies used by Dekker et al. to demonstrate the utility of tabulation
from manual model annotations. We show that our automated approach can
identify the same opportunities to improve the model by tabulation. We also
study four additional problem classes that show that our tabulation heuristics
remain effective on a wider range of problems.
Preliminaries A constraint satisfaction problem (CSP) is defined as a set of
variables X, a function that maps each variable to its domain, D : X → 2Z

where each domain is a finite set, and a set of constraints C. A constraint c ∈ C
is a relation over a subset of the variables X. The scope of a constraint c, named
scope(c), is the sequence of variables that c constrains. The scope has an order
and may contain a decision variable more than once. During a systematic search
for a solution to a CSP, values are progressively removed from the domains D.
A literal is a variable-value pair (written x 7→ v). A literal x 7→ v is valid iff
v ∈ D(x). For a constraint c we use r for the size of scope(c). A constraint c is
Generalised Arc Consistent (GAC) if and only if there exists a support containing
every valid literal of every variable in scope(c). GAC is established by identifying
all literals x 7→ v for which no support exists and removing v from the domain of
x. A support of constraint c is a set of literals containing exactly one literal for
each variable in scope(c), such that c is satisfied by the assignment represented
by these literals. In a table constraint the set of supports are explicitly listed.

2 Identifying Promising Subproblems for Tabulation

We have designed four heuristics to identify cases where expert modellers might
experiment with tabulation to improve the performance of a CP solver. The
heuristics and tabulation operate on the abstract syntax tree (AST) of a model,
once all problem class parameters have been substituted in, all quantifiers and
comprehensions have been unrolled, and matrices of variables have been replaced
by individual variables. Tabulation is applied before common subexpression elim-
ination and general flattening. Details of the tailoring process of Savile Row
are given elsewhere [19]. Our heuristics are:
Duplicate Variables identifies a constraint containing at most 10 distinct vari-

ables, with at least one variable occurring more than once in the scope.
Large AST identifies a constraint where the number of nodes in the AST is

greater than 5 times the number of distinct decision variables in scope.
Weak Propagation identifies a constraint c1 that is likely to propagate weakly

(i.e. less than GAC), such that there is another constraint c2 that propagates
strongly, with at least one variable in the scope of both c1 and c2.
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Identical Scopes identifies sets of two or more constraints whose scopes con-
tain the same set of decision variables.
Each of the four heuristics is based on a simple rationale regarding either

propagation strength or propagation speed of the constraint(s). The Duplicate
Variables heuristic identifies constraints that are likely to propagate weakly even
when the target solver has a strong propagator for the constraint type. In most
cases a GAC propagator will enforce GAC only when there are no duplicate
variables. For example, enforcing GAC on the Global Cardinality Constraint
(GCC) is known to be NP-hard with duplicate variables [4], therefore Régin’s
polynomial-time GAC propagator [22] achieves GAC only when there are no
duplicate variables. The replacement table constraint will not have duplicate
variables in scope and will therefore achieve GAC.

The Large AST heuristic identifies constraints that are not compactly repre-
sented in the AST. A typical example would be an element constraint M [x] = y
with a large constant matrix M . The rationale behind it is that a table propa-
gator may be more efficient while achieving the same or stronger propagation.

The Weak Propagation heuristic is intended to catch cases where the weak
propagation of one constraint is hindering strong propagation of another. For ex-
ample, suppose we have the constraints allDifferent(x1, x2, x3) and x1 = 10x4 +
x5, a GAC propagator is used for allDifferent, and a bound consistency prop-
agator is used for sum equality. Tabulating the sum equality constraint and
therefore potentially pruning more values from x1 may strengthen propagation
of the allDifferent onto x2 and x3. To implement the Weak Propagation heuris-
tic we need to define which constraint expressions are expected to propagate
strongly. The definition is recursive on the AST representing the expression.
Each type of AST node is defined to be either weak, or strong iff all its children
are strong. At the leaves of the AST, constants and references to variables are
defined to be strong. For example, the allDifferent constraint often has a GAC
propagator so it is defined to be strong iff all its children are strong. The con-
straint allDifferent(x1, x2, x3) is strong. Sums are defined to be weak because
they are often implemented with bound consistency propagators. The constraint
allDifferent(x1−x2, x3−x4, x5−x6) is therefore defined to be weak. Its eventual
representation in the CP solver is unlikely to enforce GAC.

Finally we consider the Identical Scopes heuristic. It is well known that mul-
tiple constraints on the same scope may not propagate strongly together, even
if each constraint individually does propagate strongly. The Identical Scopes
heuristic is intended to collect such sets of constraints into a single table con-
straint that may propagate more strongly and also may be faster.

Each heuristic fires on at least one of the case studies in Sections 3 and 4. We
discuss the expressions that trigger the heuristics, and the benefits of tabulation.
Caching We use caches to avoid generating identical tables many times for sim-
ilar constraints. To store or retrieve a table for an expression e, we first place e
into a normal form: the expression is simplified and placed into negation normal
form [19, Sec. 3.3]. Then all associative and commutative k-ary expressions (such
as sums) and commutative binary operators (e.g. =) within e are sorted. Alpha-
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betical order is used because it will group together references to the same matrix
(all else being equal) and place references to different matrices in a consistent
order regardless of the indices. The expression is traversed in left-first order to
collect a sequence of decision variables (without duplication), and the variables
in the sequence are then renamed to a canonical sequence of names to create e′.
Thus the actual variable names in e do not affect e′, only their relative positions.
e′ and the variable domains together are used as a key to store and retrieve ta-
bles in the caches. We have a persistent cache stored on disk containing tables,
and two memory caches: the first contains tables, and the second stores cases
where tabulation failed because the tabulator reached one of its limits. When
an expression is identified by a heuristic to tabulate, we look it up in the mem-
ory caches then the disk cache. In our experiments we disabled the disk cache
because it would cause timings to change depending on the order of processes.
Generating Tables Given a boolean expression e to tabulate, we first sort
e and collect a list of its variables (without duplicates) in the order used by
the cache. This ensures that the columns of the table are in the right order
for it to be stored in the cache. A table is generated by depth-first search with
a static variable ordering and d-way branching. At each node the expression
is simplified [19]; if it evaluates to false then the search backtracks. At each
leaf that evaluates to true, we store the assignment as a tuple in the table. In
some cases a heuristic will identify a constraint that is simply too large to be
tabulated. To deal with these cases we limit the depth-first search to generate
at most 10,000 tuples, and to fail and backtrack at most 100,000 times.

3 Experimental Evaluation: Baseline

Tabulation (whether performed manually or with tool support) is a well-estab-
lished technique. Therefore, instead of examining whether tabulation is effective,
we consider whether we can automatically identify subproblems that can be
usefully tabulated. Our first four case studies are the four problems presented
by Dekker et al. [6]. In each case we show that our heuristics can automatically
identify the same subproblems that Dekker et al. identified by hand, to then
yield comparable performance improvements.
Black Hole Black Hole is a patience card game where cards are played one by
one into the ‘black hole’ from seventeen face-up fans of three cards. All cards can
be seen at all times. A card may be played into the ‘black hole’ if it is adjacent
in rank to the previous card. Black Hole was modelled for a variety of solvers
by Gent et al. [9] and a table constraint was used in the CP model. We use
the simplest and most declarative model of Dekker et al. [6] where two variables
a and b represent adjacent cards iff |a-b| % 13 in {1,12}. The adjacency
constraint triggers the Weak Propagation heuristic because it overlaps with an
allDifferent constraint. No other constraint triggers any heuristic, so our set of
constraints to tabulate exactly match those identified by hand, first by Gent et
al. and later by Dekker et al.
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Block Party Metacube Problem The Block Party Metacube Problem is a
puzzle in which eight small cubes are arranged into a larger metacube, such that
the visible faces on each of the six sides of the metacube form a “party”. Each
small cube has a symbol at each corner of each of its faces (24 symbols per
cube in total), and each symbol has three attributes, with each attribute in turn
taking one of four values. To form a valid party (the party constraint), the four
small cubes forming a visible face of the large cube must be arranged so that
the four symbols in the middle of the visible face are either all different, or all
the same, for each of the three attributes. We use the model and instances of
Dekker et al. [6].

Dekker et al. tabulated a channelling constraint linking cubes and icons. The
Duplicate Variables heuristic identifies the same channelling constraint and it
is successfully tabulated. The party constraint as a whole triggers the Identical
Scopes heuristic, and the Duplicate Variables heuristic is triggered by each of
the four conjuncts of the party constraint, however these constraints are not
tabulated because the tabulator reaches a limit. Overall our system tabulates
exactly the same set of constraints as Dekker et al.
Handball Tournament Scheduling Handball Tournament Scheduling re-
quires scheduling matches of a tournament, while respecting the rules governing
the tournament, and minimising a cost function related to the availability of
venues. We use the simplified 7+7 team model and 20 instances (all of the same
size) used by Dekker et al. [6] with a standard decomposition of the regular con-
straint because Savile Row and Minion do not currently implement regular.

Dekker et al. experimented with tabulating two types of subproblem, the sec-
ond of which provided a significant performance improvement. The second type
of subproblem is a part of the objective function that calculates the cost of one
row of the schedule. The Large AST heuristic triggers for this type of constraint,
however one of the limits described in Section 2 prevents these constraints being
tabulated. It seems that fixed limits may be too coarse, and a more sophisti-
cated cost-benefit calculation may be required. The Large AST heuristic also
triggers for a small number of element constraints containing constant matrices.
Tabulation creates a unary table which is absorbed into the variable’s domain.
JP Encoding Problem The JP Encoding problem was introduced in the
MiniZinc Challenge 2014. In brief, the problem is to find the most likely encod-
ing of each byte of a stream of Japanese text where multiple encodings may be
mixed. The encodings considered are ASCII, EUC-JP, SJIS, UTF-8 or unknown
(with a large penalty). Once again our model closely follows that of Dekker et
al. [6]. We use all 10 instances in the MiniZinc benchmark repository. The in-
stances are from 100 to 1900 bytes in length. Each byte has four variables: the
encoding, a ‘byte status’ variable that combines the encoding with the byte’s
position within a multibyte character, a ‘char start’ variable indicating whether
the byte begins a new multibyte character, and the score which contributes to
the objective.

Dekker et al. tabulate three subproblems. The first connects two adjacent
status variables, and the Identical Scopes heuristic triggers on this. The second
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links status, encoding, and char start, and we found that the Identical Scopes
heuristic separately links status to encoding, and status to char start. The en-
coding and char start variables are both functionally defined by status so no
propagation is lost with two binary table constraints compared to one ternary
table. Thirdly Dekker et al. tabulate the constraint linking the score to the
encoding. The Duplicate Variables heuristic triggers on this. In summary, the
heuristics identify almost the same set of constraints to tabulate as Dekker et
al. did manually, and all identified constraints are successfully tabulated.

4 Experimental Evaluation: New Case Studies

In this section we present four case studies that were not featured in Dekker et
al. [6]. In each case we briefly describe the model and discuss the expressions
that trigger our heuristics. We evaluate tabulation with three CP solvers:
Minion-Static Minion 1.8 [10], ascending value and static variable orderings.
Minion-Conflict Same as the above with Conflict variable ordering [15].
Chuffed Current version of the learning CP solver Chuffed [5] with free search.

Each reported time is the median of five runs on a 64-core AMD Opteron
6376 (32 processes in parallel, 6 hour time limit). Times include the time taken
by Savile Row to tailor the instance and (if activated) to tabulate. Software,
models and parameter files for the experiment are available online [2], with some
additional analysis of experimental results. The results are plotted in Figure 1.
Sports Scheduling Completion The Sports Scheduling problem is to con-
struct a schedule of n(n − 1)/2 games among n teams where each team plays
every other team once with some other constraints. In Sports Scheduling Com-
pletion we start with a partial schedule. 10 instances were generated with n = 12
and 10 slots assigned uniformly at random. Trivially unsatisfiable instances were
excluded. Each game between a pair of teams is represented as a pair of variables
a and b and also a single variable c, with the channelling constraint n*(a-1)+b=c.
The Weak Propagation heuristic identifies the channelling constraint, and tab-
ulating it proves to be highly beneficial for the two Minion configurations. With
Chuffed the picture is mixed. Some instances are slowed by tabulation, partic-
ularly the easiest four, while some of the more difficult instances benefit from
it. Van Hentenryck et al. manually tabulated the same constraint in their OPL
model of Sports Scheduling [23].
Langford’s Problem Langford’s problem (CSPLib problem 24 [1]) with pa-
rameters n and k is to find a sequence of length nk which contains k copies
of each number in the set {1, . . . , n}. The sequence must satisfy the constraint
that if the first occurrence of x is at position p, then the other occurrences ap-
pear at p + (x + 1)i, for i ∈ {1, . . . , k − 1}. We model Langfords as an n × k
2D matrix P , where row i represents the positions of the k occurrences of i.
The constraints are P [i, j] = P [i, j − 1] + i + 1 and all the positions P [i, j]
are different. We also break the symmetry that the entire sequence can be re-
versed by requiring (P [1, 1]− 1) ≤ (nk− P [1, k]). We use all 80 instances where
n ∈ {2 . . . 17} and k ∈ {2 . . . 6}. The Weak Propagation heuristic triggers on the
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Fig. 1. Tabulate vs Default, total time with Minion solver and static variable ordering
(top), Minion solver and Conflict variable ordering (middle), and Chuffed solver with
free search (bottom). The x-axis indicates time taken by the default configuration (in-
cluding both Savile Row and the solver). The y-axis indicates the speed-up obtained
by tabulation. Instances that time out are reported as if they completed in 6 hours.
The dotted line indicates the time limit of 6 hours; points appearing on the line timed
out with the default configuration.
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P [i, j] = P [i, j − 1] + i + 1 constraints (because they overlap with the global
allDifferent). Tabulation of these constraints improves propagation and results
in improvements for all three solvers.
Coprime Sets Erdös and Sárközy [7] studied a range of problems involving
coprime sets. A pair of numbers a and b are coprime if there is no integer n > 1
which is a factor of both a and b. The Coprime Sets problem of size k is to
find the smallest m such that there is a set of k numbers in {m/2 . . .m} that
are pairwise coprime. In our model the set is represented as a sequence of in-
teger variables. Each pair of variables a and b has a set of coprime constraints:
∀d ∈ {2 . . .m} (a 6≡ 0 (mod d))∨(b 6≡ 0 (mod d)). Adjacent variables are ordered
to break symmetry. We use the instances k ∈ {8 . . . 16}. The Identical Scopes
heuristic triggers on the coprime constraints (and any symmetry breaking con-
straint) for each pair of variables. All the original constraints are tabulated.

Static variable ordering follows the sequence from smallest to largest number,
so would appear to be a natural choice. However, Minion-Static performs poorly
compared to the other two solvers. In this case, tabulation makes the model
more robust to the poor variable ordering, speeding it up by over 1000 times in
some cases. Tabulation provides no benefit for the other two solvers that already
solve the instances relatively well.
Knight’s Tour Problem The Knight’s Tour Problem on an n× n chessboard
is to visit every square of the board exactly once while making only knight’s
moves. We use a model where the location of the knight is encoded as a single
integer (nx+y), we start at location (0,0) and search for a sequence of n2 distinct
locations. We use instances n ∈ {6 . . . 10}. The knight’s move constraint contains
two location variables and uses integer division and modulo to obtain the x
and y coordinates. The coordinates are used multiple times in the expression.
Identical common subexpression elimination (CSE) substantially improves the
model by adding auxiliary variables for the x and y coordinates among others.
The default configuration includes identical CSE. The knight’s move constraint
triggers the Duplicate Variables, Large AST and Weak Propagation heuristics.
Tabulation produces a quite different model with no auxiliary variables, much
stronger propagation and far better performance with all three solvers.

5 Conclusions

In this paper we have demonstrated that a small set of heuristics can success-
fully and automatically identify promising subproblems in a constraint model for
tabulation, and that these opportunities can be effectively exploited through an
automated tabulation method incorporated into the automated constraint mod-
elling system Savile Row. Our heuristics identify the same tabulation oppor-
tunities as recent work by Dekker et al. using manual annotations of a MiniZinc
model [6]. In addition we have presented four new case studies demonstrating
the efficacy of our heuristics and automated tabulation.
Acknowledgements We thank EPSRC for grants EP/P015638/1 and EP/P-
026842/1. Dr Jefferson holds a Royal Society University Research Fellowship.
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